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Abstract

Numerical simulations [2-D Riemann problem in gas dynamics and formation of spiral, in: Nonlinear Problems in Engineer-
ing and Science—Numerical and Analytical Approach (Beijing, 1991), Science Press, Beijing, 1992, pp. 167-179; Discrete
Contin. Dyn. Syst. 1 (1995) 555-584; 6 (2000) 419-430] for the Euler equations for gas dynamics in the regime of small
pressure showed that, for one case, the particles seem to be more sticky and tend to concentrate near some shock locations, ar
for the other case, in the region of rarefaction waves, the particles seem to be far apart and tend to form cavitation in the region.
In this paper we identify and analyze the phenomena of concentration and cavitation by studying the vanishing pressure limit
of solutions of the full Euler equations for nonisentropic compressible fluids with a scaled pressure. It is rigorously shown that
any Riemann solution containing two shocks and possibly one-contact-discontinuity to the Euler equations for nonisentropic
fluids tends to &-shock solution to the corresponding transport equations, and the intermediate densities between the two
shocks tend to a weightddmeasure that, along with the two shocks and possibly contact-discontinuity, fordstioek as
the pressure vanishes. By contrast, it is also shown that any Riemann solution containing two rarefaction waves and possibly
one-contact-discontinuity to the Euler equations for nonisentropic fluids tends to a two-contact-discontinuity solution to the
transport equations, and the nonvacuum intermediate states between the two rarefaction waves tend to a vacuum state a:
the pressure vanishes. Some numerical results exhibiting the processes of concentration and cavitation are presented as th
pressure decreases.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fluids are substances whose molecular structure offers no resistance to external shear forces: even the smalles
force causes deformation of a fluid particle. In most cases of interest, a fluid can be regarded as continuum,
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thus satisfies the balance laws of density, momentum, and energy. Fluids with large Mach number and far from
solid surfaces can be described as the inviscid Euler equations. Pressure as a thermodynamic variable depenc
on other fluid variables such as density and internal energy. Such dependence is possible to be estimated fron
statistic mechanics or kinetic theory and is usually obtained by laboratory measurement. If the gas is ideal, then
the pressure may become small in some physical regimes, for example, when the density or internal energy is
small.

Itis well-known, in the compressible fluid flow, if the speed is larger than the sound speed, shocks may form when
particles collide. However, as observed numericalljbii®] for gas dynamics in the regime of small pressure: for
one case, the particles seem to be more sticky and tend to concentrate at some shock locations which move with th
associated shock speeds, and for the other case, in the region of rarefaction waves, the particles seem to be far ap:
and tend to form cavitation in the region. Such phenomena may be regarded as a tendency towards the concentratic
and cavitation in terms of the density. We have rigorously justified the phenomena of concentration and cavitation
for isentropic fluids by looking at the vanishing pressure limiflii]. One of the main objectives of this paper is
to show rigorously that the phenomena of concentration and cavitation in the solutions are fundamental in inviscid
nonisentropic flow, which occur not only in the multi-dimensional situations, but also even in the one-dimensional
case.

Consider the nonisentropic compressible fluids modeled by the full Euler equations in Eulerian coordinates:

3:p + dx(pv) = 0, (1.1)
3 (ov) + 3 (pv®> + P) =0, (1.2)
3 (0E) + 9. ((pE + P)v) =0, (1.3)

wherep represents the density, = pv the momentumpE the total energypP the scalar pressure, apd> 1 the
adiabatic exponent; angdandm are in a physical regiof(p, m) : p > 0, |m| < Vpp} for someVp > 0. Forp > 0,

v = m/p is the velocity withjv| < Vy. In order to analyze the vanishing pressure limit of solutions, we assume
that the scalar pressuris a scaled function of the conserved quantities of the depsityomentums, and total
energypE for polytropic gases:

m2
P=e(y—-1) (,oE — —) (1.4)
2p

with a small scaling parameter> 0 modeling the strength of pressufe Experimental and numerical studies of
flows are often carried out on models, and the results are displayed in dimensionless form, thus allowing scaling to
real flow conditions. The scalin@..4) may not be claimed as a faithful description of the whole fluid flow, but it
does in the regime of small pressure in the flow. Although the paramesear be considered very small and reflects
the strength of the underlying pressure, it does not vanish in general. We propose to include this parameter in hope:
of understanding the process of the formation of concentration and cavitation in nonisentropic compressible fluid
flow.

System(1.1)—(1.4)is an archetype of hyperbolic systems of conservation laws of the form:

o+ 0y f(u,e) =0 (1.5)

with u = (p, pv, pE) " and f(u, €) = (pv., pv? + €p, (0E + ep)v) T with p = (y — D (pE — m?/2p).
As e — 0, the limit system formally becomes the following transport equations:

3o + dx(pv) =0, (1.6)
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3 (pv) + dx(p?) =0 (1.7)
with an additional conservation law:
3 (pE) + dx(pvE) = 0. (1.8)

In this paper, we rigorously study the limit process and prove that the additional conservatigih8xactually
yields the entropy inequality:

(pv?); + (pvd), <0 (1.9)

in the sense of distributions for the Riemann solutionglt6) and (1.7) The closed systerfl.6) and (1.7)with
the entropy inequality1.9), is also called the one-dimensional system of pressureless Euler equations, modeling
the motion of free particles which stick under collision and other related motion§4(4€534).

The transportequations (1.6) and (1.7have been analyzed extensively since 1994; for example, see
[1-4,13-15,20-22,24,31-33)nd the references cited therein. Also $£6-18,25,29,30for related equations
and results. It has been shown that, for the transport equadishecks and vacuum states do occur in the Riemann
solutions satisfying the entropy inequal{ty.9). The occurrence af-shocks and vacuum states can be regarded as
a result of resonance between the two characteristic fields of the traespations (1.6) and (1.7)

In this paper, we rigorously analyze the phenomena of concentration and cavitation in the vanishing pres-
sure limit of inviscid nonisentropic fluid flow. This limit can be regarded as a singular flux-function limit of
entropy solutions to hyperbolic conservation lads). We prove that such phenomena occur even naturally in the
one-dimensional case: any Riemann solution containing two shocks and possibly one-contact-discontinuity to the
Eulerequations (1.1)—(1.4ends to a-shock solution to the transpagtjuations (1.6) and (1.7and the interme-
diate densities between the two shocks tend to a weighitedasure that, along with the two shocks and possibly
one-contact-discontinuity, formssashock; by contrast, any Riemann solution with two rarefaction waves and pos-
sibly one-contact-discontinuity fqi.1)—(1.4)tends to a two-contact-discontinuity solution(io6) and (1.7)the
nonvacuum intermediate states between the two rarefaction waves tend to a vacuum state; and the conservation law
of energy(1.8)yields the entropy inequalitfd.9) naturally imposed on th&shocks. This shows thatsashock for
the transport equations is a result of concentration of the density, while a vacuum state is a result of cavitation in
the vanishing pressure limit; both are fundamental and physical in fluid dynamics.

Since strict hyperbolicity of the limiting system fails, the phenomena of concentration and cavitation as the
pressure decreases can be regarded as a process of resonance formation between the two characteristic fields frol
the point of view of hyperbolic conservation laws. These phenomena show that the flux-function limit can be very
singular: the limit functions of solutions are no longer in the spaces of functast L.°°; and the space of Radon
measures, for which the divergences of certain entropy and entropy flux fields are Radon measures, is a natural
space for dealing with such a limit in general. $&e10]for a theory of divergence-measure fields.

In Section 2 we discuss-shocks and vacuum states for the transpqgttations (1.6) and (1.And examine the
dependence of the Riemann solutions on the parametelO for the Eulerequations (1.1)—(1.4)n Section 3
we analyze the phenomenon of concentration in the vanishing pressure limit of the Riemann solutions to the Euler
equations (1.1)—(1.4)n Section 4 we analyze the phenomenon of cavitation in the vanishing pressure limit of the
Riemann solutions tfl.1)—(1.4) In Section 5we present some representative numerical results, obtained by using
the localized central scheme (4&86,26)), to examine the processes of concentration and cavitation in the Riemann
solutions to(1.1)—(1.4)as the pressure decreases.
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2. 8-Shocks, vacuum states, and Riemann solutions

In this section, we first briefly discugsshocks and vacuum states in the Riemann solutions to the transport
equations (1.6) and (1.7and then we examine the dependence of the Riemann solutions on the paraméter
for the Eulerequations (1.1)—(1.4)

2.1. 5-Shocks and vacuum states for the transport equations

Consider the Cauchy problem for the transgmtiations (1.6) and (1.With Riemann initial data:
(p, V)(x,0) = (px,vx), £x>0 (2.1)
for p1+ > 0. Since the equations and the Riemann data are invariant under uniform stretching of coordinates:
(x, 1) = (ax, at),

we look for the self-similar solutions @1..6), (1.7)and(2.1).

(0. 0)(x. D) = (p, V)(E), &= ’—;

for which the Riemann problem is reduced to the boundary value problem of the ordinary differential equations:

—£ps + (o) =0,  —E(v)e + (Mg =0,  (p, v)(£00) = (pa, V).

As in [31], in the case_ < v, we can obtain the following solution that consists of two-contact-discontinuities
and a vacuum state determined by the Riemann @atav):

(p—,v2), —oco<é&=<uv_,
(p, v)(&) = (0,9, V- <§ <y,
(o4, v4), vy =& <00
Inthe case— > v, a key observation is that the singularity cannot be a jump with finite amplitude, i.e. there is no
solution which is piecewise smooth and bounded; hence a solution containing a wéightedure (i.e3-shock),
supported on aline, was constructed in order to establish the existence in a space of measures from the mathematic
point of view (also se§9,30).

To define the measure solutions, the weiglteteasurev(r)§s with weightw € C[0, co), supported on a smooth
curveS = {(x(s), t(s)) : a < s < b} can be defined by

b
(w(-)ds, ¥(-, ) =f w(t(NP(x(s), 1()Vx'(5)2 + 1'(s)2 ds

a

foranyy € C°(R x R4), R = (—00, 00) andRy = (0, 00).
With this definition, one can construct a family of solutions in the aase- v,. A §-measure solution with
parametet can be obtained as

p(x, 1) = po(x, ) + wo(1)ds, v(x, 1) = vo(x, 7).

HereS = {(x,1) :x =0t,0 < t < oo}:

t
po(x,t) = p— + [p] H(x — ot), vo(x, 1) = v— + [v]H(x — o7), wo(t) = m(d[ﬂ] — [pv]),
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where [g] := g+ — g— denotes the jump of functiog across the discontinuity from the left state to the right
stateg, and H(x) is the Heaviside function that is 0 when< 0 and 1 whenx > 0.
Then one can conclude that theneasure solution satisfies

(p, d1) + (pv, 1) = 0, 2.2)
(v, @) + (pv?, ¢r) = 0 (2.3)
for¢ e CF(R x Ry), where
<mﬁw=/w/wm%muw+mw&@,k=QLz
0 —00
and

1
1402

wi (1) = ([pv* ] — ol pv*]). (2.4)

A unique solution can be singled out by thi&ankine—Hugoniot condition:

e 2.5)
NN

satisfying thes-entropy condition:

vy <0 <v_, (2.6)

which is consistent witl§1.9). The entropy condition means that, in the r)-plane, all the characteristic lines on
either side of &-shock run into the line af-shock, which implies that &shock is an overcompressive shock.

2.2. Riemann solutions to the Euler equations for nonisentropic fluids

The Eulerequations (1.1)—(1.4pr smooth solutions withy(x, 1) > 0 can be written as

o+ A(w)o,u =0, u=(p, pv, ,oE)T,

where
0 1 0
Aw) = 2((r = De =202 2— ey =Dy vy =1
e(y—l)(c) v+ 5 v e(y—l)(c) +—2 v“ (QA+e(y—D)v

Then the eigenvalues of systdfnl)—(1.4)are
Al =1v—C", A2 =, r3=v+c¢ for p>0,
with associated right eigenvectors:

1

U—G—Qjce
2

- 0.c€ J €\2
5V +0jc v+6(y_1)(6)

rj =
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and left eigenvectors:

2
12 0] € ej_l N2 9]' €
2 _ A
' (2” -0 T T G-t

whered; = sign(j — 2) and

¢ =cle,e) i=yeyly —De, yve=1+e(y—1.

The Riemann invariants along the characteristic fields are

€ 2 € € 2 €
{S’”e(y—l)c}’ ek {S’” e(y—l)c}’ @7

respectively, where

—Ve
$€=1In (”p ) with « > 0 (2.8)
K
and

p =y —Dpe. (2.9)

The Riemann solutions, which are the functiong ef x/¢, are solutions of

—Epe + (pr)e =0,  —&(pv)e+ (0P +ep)e =0,  —E(PE)s + (0E + ep)v)e = 0,
(p9 v, E)(:i:OO) = (p:ts V4, E:l:)

Then the Rankine—Hugoniot conditions for discontinuous solutio.19—(1.4)on a discontinuity are
olpl =[pv].  olpv] =[pv?* +epl.  olpE] = [(0E + ep)v],

which can be rewritten in terms of := v — o andJ := pw = pv — op as

[J]=0, [Jw +ep] =0, J [ () + w2:| =0.

e(y -1

Hereafter, we use the usual notatigh £ gr — g1, whereg andg, are the values of functiogon the left-hand and
the right-hand sides of the discontinuity, respectively.

Contact-discontinuitiedf o = v = vy, the discontinuity is a contact-discontinuify, which corresponds to the
second family of characteristic fields. Then

[v]=0,  [p]=0.

Shock curvedf o # vy, vy, then the discontinuity is a shock wave, which corresponds to either the first or third
family of characteristic fields. Then the Lax entropy inequalities and the Rankine—Hugoniot conditions imply that,
on a 1-shocksy:

[p] >0, [o] >0, [v] <O (2.10)
and, on a 3-shocKs:
[p] <O, [o] <0, [v] <O, (2.11)

which means that the shocks are compressive.
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We now explicitly calculate the two one-parameter families of shock curves to examine their dependence on
Define
Pr Pr y—1 2
= ), =, Qe = > /8 = +
pI P 2k T e(y—1
The entropy inequalitie€.10) and (2.11yshow thatr > 1 andz > 1 for 1-shocks andr < 1 andz < 1 for
3-shocks. The relatiotc€)? = ey.p/p gives

T 1.

N

Similarly, [J] = 0, i.e.pqyw; = prwy, yields

w_m_1

w e 2
Substituting the above relations inff(2/e(y — 1))(cf)2 + w?] = 0 leads to
<w02:<m—1n@—n)

— 2.12
cf 1-22 ( )

Also, using Ep + Jw] = 0, we find

2
w) z(1—m)
— ) = —=. 2.13
(Cf) Ve(l—2) ( )

A combination of the above two relations yields

1+ 7Be
1=—= <
7+ fe

Since. — z = (1 — z3)/(z — n), it follows from (2.12)that

ﬂ — (_l)(j—l)/z (Be — 1)z
CF /36 —Z

for j-shocks,j = 1, 3. The relationw = v — o gives the shock speed:

; (Be — Dz i+1)/2,e | L+ 7Be
o= + (=1UtD/2ee [2€ T8 g 4 (=) UHD/2ee [Z T TC 2.14
"V oB -z W1+ 6 (@14)

for j-shocks,j = 1, 3. Noting thatw, = zw; andw = v — o, we then have

z—1 . Be—1 m—1
v —v) = —(—v) = (-1 G 1)/26'6 - .
r— Ul ; ( D= (1 | ” T,

Following [27], one introduces = € > 1 fors < 0. In terms of this parameterization, we obtain the following
formulas for thej-shock curvesj = 1, 3, respectively.

Be-

e 1-Shock curveFors < 0:
&—e_s pro_ Be+ € ur—v 2Jac/e 1—e

Pl ’ o 14 B’ o  y—-1 /1t+Bes
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e 3-Shock curveFors < 0:

P pr_ Bete” vr—v|:2m e—1 .
n a1+ pees cf y—1 J1+B€
Rarefaction wave curveSince the 1-Riemann invariants are constant in any 1-rarefaction Rawee have
SE = Sf (2.15)
and
vr + (Be — Def = v + (Be — Dy (2.16)

Then(2.15)and the relatiop = « €5 p¥« yield
ﬂ _ <&>V5
P o)

From (c€)? = ey, p/p, we have

€ (ﬂe_l)ye
% - (ZL) . (2.17)
|
Using(2.16) we have
Ur — )| €
' — =B -1 (1— —2> . (2.18)
< <

The fact that; = v — ¢ mustincrease in a 1-rarefaction waReimpliesvr — v > ¢f — ¢f. Combining this with
(2.17) and (2.18yields 0< cf/cf < 1and O< pr/p; < 1. Thus, we can introduce a parametéry

s = —Iog(ﬂ) > 0.
Pl

Then we have

e 1-Rarefaction wave curvé-ors > 0:

Proes, Doevr,  TTH o (g - e,
14! Pl C
e 3-Rarefaction wave curvéd-ors > 0:
&:e", ﬂ:e"/ye’ Lél)I:(,Be—l)(emfs—l).
)4l Pl C
Therefore, we have
e 1-Family curvesFors € R:
e_-“/Ve, s > 0’
Pr 5 Pr € . .
— =€ — = fi(s) =
V4| Pl fl ﬂ, s <0,
1+ g€
Be—D(1—e %), 5>0,
Ur — V)

o =he) =) 2a/e 1-e” -
9 S —_—
! y—1 Jitp.e>

0.




G.-Q. Chen, H. Liu/Physica D 189 (2004) 141-165 149

e 2-Family curvesFors € R:
ﬂ=1, &=ev, Ur = .
P ol

e 3-Family curvesFors € R:
1 (Be =D =1, s=>0,
p o Ur — | .
glr:eﬁ ;Ir=f§(s>= =" —— =h56) =1 2/aje e -1
1 I -, 5§=<0
y—1 J1+B:€

Riemann solutionConsider the Riemann problem fdr.1)—(1.4)

u(x,0) =uq, +x > 0. (2.19)
With the above explicit formulas, it suffices for solving the Riemann problem tosfing, ands$ determined by
pr = f1(s9) €2 £5(s5)p-, (2.20)
py=6€5"p_, (2.21)
vy = v +cS (hi(si) + LSEZ)/Zhg(sg)) . (2.22)
V6D
Define
A=t gt e
p-’ p-’ <
Then one can findf, i = 1, 2, 3, successively as follows:
16D + \/§ 1(s1 +logB) = C°, (2.23)
s5 =57 +log B, (2.24)
s5 =log (W) , (2.25)

where we used the fact th#f (s) f5(s) = 1 andh§(s) = é/zhi(s),/ff(s).
Combining the above relations with the fact thiaf)’ (s{) > 0 andi{(R) = (—oo, B — 1], we have the following
theorem.

Theorem 2.1. For any fixede > 0, there exists a unique Riemann soluti®(x/ ), staying away from the vacuym

of the Riemann probleifi.1)—(1.4)with Riemann dat#2.19)if and only if
2 € €
vy —U_ < I
y—1 €

Otherwisethe vacuum is present in the Riemann solution

This means that, given the Riemann data staying away from the vacuum, there exists always a unique Riemann
solution staying away from the vacuum wheis sufficiently small, since

cf +cS

€

— 00 ase— 0,
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which is different from the situation for isentropic flgd&/1]. On the other hand, we will see below that, although
the intermediate densities in the Riemann solution stay away from zero for any fixéqj they become closer and
closer to zero as — 0, a phenomenon of cavitation.

Whenu, € S525:51(u—), R(x/t) may contain a 1-shock, a two-contact-discontinuity, a 3-shock, and two nonva-
cuum intermediate constant states between the shocks and the contact-discontinuity; and, wheiS.R1 (1),
R(x/f) may contain a 1-rarefaction wave, a two-contact-discontinuity, a 3-rarefaction wave, and two nonvacuum
intermediate constant states between the rarefaction waves and the contact-discontinuity. Since the other two regior
$2ScR1(u—) andR2ScS1(u_) in R3 have empty interior wheatends to zero, it suffices to analyze the limit process
for the two cases € S2S:S1(u—) (in Section 3 andu € R2ScR1(u—) (in Section 4. For more details about
Riemann solutions, sd&,12,27,28]

3. Concentration in the vanishing pressure limit

In this section, we study the phenomenon of concentration and the formatié&shafcks in the vanishing
pressure limit of Riemann solutions to the Euler equations for nonisentropic fluids in the_cas&>S:S51(u_)
with v_ > v,

3.1. Limiting behavior of the Riemann solutionscas- 0

Letu$ := (o5, pj v, of EF), i =1, 2,with p = p5 = pf, be the intermediate states inthe sensethat o,
and(ps, pf, v5) determine a 1-shock with speeds] and that(ps, o5, v§) and(p4., o4, v4) determine a 3- shock
S3 with speedss. The differencep; — o is the jump of density which determines a two-contact-discontinfgty

Based on these facts, we can obtain the limits;of = 1, 2, 3, ase — 0, respectively.

Lemma3.1. If v_ > vy, then

_pep— (v —v)? _ pep— (v —v)?

lim ee™1 =g : lim ee™5 = g3 :

>0 (s + PP 0 PPy + PP
2 1
||m e = q2 M
-0 2+ (y—Dag1’

Proof. From(2.23) it follows that

l-eti \/E 1-e*1/B _ =D v v 3.1
Ji+poes 14 poesiyp eele V2o
Note thatc® = /ee_y.(y — 1) anda. = (y — 1)/(2y.). Passing to the limi¢ — 0 yields
\/E 1-ei/B @ _|B q1/B
1+ﬁe 1+ B e—fl/B V2qi/y =1V AV2q/(Bly = 1)
qi(y — 1 1;%_, (3.2)

whereg1 = lim_,o € € 1. Combining(3.1) with (3.2), we obtaing; as asserted.
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The second limiyz follows from the above limit and the relation:

. eet
ee¥s = .
B
Note that

S —1o (*)
2= O 76D 569

and
€ 1 € _ 1 2
FEGD) £5(55) = (Be + e’:)( + Be efj) Loev=b+2
(Be +€3)(1+ 1) Bm(y—-1+2
We thus obtain the limit of'e ase — 0. O

Lemma3.2. Ase — 0, the intermediate densitigg and o5 become unboundede..

20443
2+ (y —Dgs

. 2p-q1 .

| e=_ = | <
LT 2 D o2
Proof. Note thato§ = p_ f5(s5) = p—(Be + €1)/(1+ e €1), wheref €1 — 2/((y — 1)q1) ase — 0. Thus:

L - 2/y-D+eld+ed) 2p_q1

lim epf = p—lim - = .

e—0 e—0 1+ B 24+ (y—Dq1
The limit of pf, follows from the relation:

05 = py f1(s3)

andLemma 3.1 O

We now consider the intermediate velocifyand pressurg$ between the two shocks.

Lemma 3.3. The intermediate velocity, and pressure, satisfy

PV + /oy vy (3.3)
N/ SN '

lim v =0 =
e—0

and
2
_(Vy — v
mepi_p+p(+ )

l = -
o (VP + /P-)?

Proof. Using the formula for the 1-shock curve, we have
2 [ac 1—ei
v =v_ + /= .
y—1 € /1+ﬂ€e_si
Noting thatc® = \/ee_y.(y — 1) anda. = (y — 1)/2y., we find
1—e
V(y — De_qa,

Iim0 v =v_ + \/Ze_limo— =v_ —
€e— €e— /1+ ,35 e_si

which yields(3.3) by using the expressions foj.

(3.4)
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For the intermediate pressure, one has

pi=p-e’i,  pp=pies
Combining this with the estimates feff, i = 1, 3, yields(3.4). a
Lemma 3.4.

. . . JP—v_ + v

lim of = lim o5 =lim of = p pri+ _ o € (vy, V).

e—0 e—0 e—0 [P+ + /-

Proof. The limit for o5 = v directly follows from the known limit fong, above.
By (2.14)with = = 1, we have

1+ g€
IImO o] =v_ —lim ¢ 1rher =v_ —+/(y —De_q1.

e—0 1+ B
Combining this with the expression gf yields the desired limit fos7. The limit for o5 can similarly be proved]

Lemma 3.5.
lim pj(o] —05) = PO "er(v+ —v_) (3.5)
e—~0 N P— Tt P+

and
. ,0+\/,0_—
lim p5(05 —05) = —————(vy —v_). 3.6
a0 P20 3 o=+ Jpr + (3.6)

Proof. Note thatof = v_ — ci\/(l + Bee™1)/(1+ Bo) and
. . 2c¢ JacJe 1—et

* + .
=1 J1tpe

Thus, we have

(05— o) = e | [i+peet
O (o} =
Pis oD = pie m 1>\/m 1+ fe

e+ evr-1

)Olc l
,/1+ﬁ e 2
= |2 o ( ! 1+€'y2_1(1+e—55))
- \/62+eﬂe-ee‘si VY-

N 2q1v/2p—p— 2+ (r—Da1 _
@+ —DqV2q1/(v-1 2Jy-1
which gives(3.5). To prove(3.6), we use

[14 B.e %
a§:v++cj_ Téﬁs

1+ Be e—~‘i>)

P-p-4q1,
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and

05 = V5 = vy — c5h5(s5),

where
€ ¢ €
5 = Vef* _ eygp—+f§(s§)e*“3-
P2 P+

Therefore, we have

y—l € 2/ 1—es§
o5 — 05 =c< —6( )\/1+ﬁe e %3 + \/ 6/6
3 2 + 2 1

Ve ) ‘/1+ﬁeesg

Performing similar analysis to that for the first limit, we have

S¢S 2 1 Jy=1 ¢
p5(05 —03) = Fots <\ 7 <m + < )/2 1+ e_s3)> —> J/P+p+q3 ase— 0,
Y1+ peeal Ve AVY
which arrives at3.6). O

Remark 3.1. The quantityo that is the limit ofv ando;,j = 1,2, 3, inLemma 3.4uniquely determines the
3-shock solution as the limit of the Riemann solutions whers 0 and is consistent with thi2Rankine—Hugoniot
condition(2.5) and thes-entropy conditior(2.6), as proposed for the Riemann solutions for the pressureless Euler
equations.

3.2. Concentration ané-shocks
We now show the following theorem characterizing the vanishing pressure limit for the_case .

Theorem 3.1. Let(p%, p€v°, p€E€) be the Riemann solutions (d.1)—(1.4)and (2.19) which contain two shocks
and possibly one-contact-discontinuitihenp¢, p€v¢, and p€ E€ converge in the sense of distributionsspectively
and the limit functions are all sums of a step function arddraeasure with weights

t

t t 2
— —_— - 9 T —_ - 9 — —_ - E 9
—— (o]~ olo)) —— (]~ olo) —— ([p0E] — oloED
respectivelywheres = (/p—v— + /o1v+)/(/p+ + /P—).

Pr oof.

1. For¢ = x/t, the Riemann solutions are determined by

p-, & <oi,

€ € €

Py, 01 <& <o,

CER R 2
PS5, 05 <& <05,
P+, &> 03
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and
v, &< ai,
() =15, of <&<os,
vy, &> 03,

which satisfy the following weak formulations:

—/ w@—af@W®@+/ P& () dE = O, (3.7)

—/ (v (§) = P GV EY' ) d$+/ P EVE)Y(§) dE = 6/ PEEY (&) g, (3.8)

[ we-ororeveds [ forevod=c[ rororod @9
foranyy € Co°(R).
2. The first integral i(3.7) can be decomposed into:

_{/l+/f+/f+/éhf®—9f®W@N$
—00 of o5 o3

The sum of the first and last terms is

Lo —opved- [ w-opves
—0o0 0'3
1mW9%—mﬁW@—f P& de,

€
3

= 0D + v P b0 + p-ofvop) — |
—00
which converges, as— 0, to

(e

nﬂ@%—/ mmax=mﬂ—dmww—/

o0

([pv] = olpD V(o) — / po(§ — o)y (§) d&

with
po(&) = p— +[p] H(®).
Furthermore, we have

/2@—9ﬁW®®

€
1

zqw_qwﬁww_ww—%W@_%W@+gle ?wmg,

o5 — 0] 05 — o] 05 — 07 Jos
which, in virtue of the smoothness of the test functip), converges to

P—/D+

T+ m(—dlﬂ'(ﬁ) + oy’ (0) + ¥(0) — ¥(0)) =0

(v4 —v-)
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ase — 0, where we used the facts that ling v, = o and lim_,gof = o fori = 1, 2, and(3.5). Similarly, we
have

jim / (W (€) — £)p" (©)/ (&) 0 = 0.
e—0 (,5
Returning to(3.7), one has
o0
im / (&) — po(& — oNY(E) dt = ([pv] — o[ V(o)
€—> —00

for all functionyr € Cz°(R).
. We now justify the limit of the momentum® = p€v by using the weak formulation of the momentequation
(3.8). As done previously, we can obtain the limit for the first term on the left-hand si(&)fas

~hm / V() — &P GV (EY (&) dé

p_v (&) de — / prvsY(E) de

=y (2] - ol - [
= V@ p?) = alpn]) — [ mote - oyee) de
with
mo(§) = p—v— + [pv] H().
The term on the right-hand side (#.8) equals to

6/ POV () ds =6</ ' p7+/ 3pi+/€ p+> V' (6) dé

1 ]
= ep_y(0]) + €pi(Y(03) — ¥(01)) — ep1Y(03)
= 0(€) + O(L)(Y(05) — ¥(0})) - 0 ase — 0,

where we used the fact that is bounded and ligpy,oof = o fori =1, 3.
Returning to the weak formulatidi3.8), one has

o
€|im0 / (P° (N () — mo(E — 0))Y(§) d& = Y(0)(a[pv] — [pv7)).
-V J-c0
. Next we consider the limit of the total ener@y by using the weak formulation of the energguation (3.9)
Performing the similar analysis as above and using the identity

E=>p®+——,
P 2'0 y—1

we have

mf (W) — P G E©)Y' () dé

—li
e—0

— Y(0)([pvE] — o[ pE]) - /

o

p_E_y(&) de / P E4y(®) &,
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The term on the right-hand side (&.9)tends to zero as — 0. Therefore, we have
eli—r>n0 /_Z(pEEG(E) — &o(§ — 0)Y(§) dé = (o) (a[pE] — [pvE])
with
Eo(§) = p—E_ + [pE]H(®).

5. We are now in the position to study the limits of density, momentum, and energy by tracing the time-dependence
of weights of theS-measures.

Lety € C5°(R x Ry) and sety (&, 1) := V(& 1). Then we have

. o0 o0 c o o0 o0 . X
!@0/0 /_Oop (x, OW(x, 1) dx dr _elg]o_/() /_oop (;) w(x, 1) dx dt

—im [ [T srebend)
«—0 Jo — 0
sincep® is a self-similar solution depending only ér= x/t. Therefore, we have
lim f PIEVE ndE = / po(é = )&, 1) dé + ([pv] — olp V(0 1)
=t [ ot = anpx.n dr + [ou] — ol .

Combining the above two relations, we have

e—0

lim / / P, DY (x, ) dxdr = / f po(x — ot)P(x, ) dx dr + / t([pv] — o[ pD(ot, 1) dt.
0 J 0 J-oo 0
The last term, by definition, equals to

(wo()ds, Y(x, 1)

with wo(¢) = (¢/v/1+ o2)([pv] — o[p]) asin(2.4).
Similarly, we can show that

e—0

im, | h / " 0V e, v = / b / " o(x — onwr, 0 drdr + (wi(d8s, ¥(x. 1)
0 —00 0 -

with w1(f) = (t/v/1+ 02)([pv?] — o[pv]), and
|imo foo foo 0 (x, DE (x, DY(x, £) dx dr = /oo /OO Eo(x — oty Y (x, 1) dx df + (w()ds, Y(x, 1)
«—0 Jo —o0 0 —00

with w(t) = (t/v/1+ 02)([pvE] — o[pE])) as defined irf2.4). O

Finally, we conclude the entropy consistency by proving that the conservation law of €hedpgctually yields
the correct entropy inequaliiL.9) for the transporéquations (1.6) and (1.7)
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Theorem 3.2. The limit functiongp, v) are a measure solution of the transport equatjiré) and (1.7satisfying
3 (pv®) + dx(pv*) < 0

in the sense of distributions

Proof. Sinced, (p€E€) + 9. (p v E€) = 0 in the sense of distributions apd = p/(y — 1) + (1/2) pv?, then

3 (05 (v)?) + 85 (p (1)) = — (3 p€ + 3. (pv°)).

y—1

That is, for any nonnegative test functigre C3°(R x R, ):

2
—((p° ()2, ¢r) + (P ()3, px)) = m((pi br) + (PU, ).

Note that

o0 o0
lim / / (pEbe + p°vehy) decl
0 —00

e—0
= lim /Ooo(ai(pi — p-) — (pLvs — p—v-))p(oit, 1) dt
+€|iﬂﬂ0 /Ooo o5((p+ — PS) — (p+v4 — pLvy))g(ost, 1) de
- /O T 0ps = p) — (prus — pv Nlon ) d
- /O (o — va)@py + (L — @) p)lot, 0 dt < O,

since, fora = /p—/(/p+ + /P-) € (0, 1):

/p—v_ + v
o= p 'O++=ow_+(1—a)v+.
P+t -
This verifies the entropy consistency as claimed. O

4. Cavitation in the vanishing pressurelimit

In this section, we show the phenomenon of cavitation in the vanishing pressure limit of the Riemann solutions
to (1.1)—(1.4)in the caser; € RaScR1(u—) with v_ < vy andpy > 0.

Letug = (of, pfvs, EY), i = 1,2, with p$ = p§ = p5 be the intermediate states in the sensethat p_, v_)
and(pg, pf, v5) determine a 1-rarefaction wawg, and that pg, o5, v) and(p,., p4, vy) determine a 3-rarefaction
wave R3. The differenceps, — pf is the jump of density across the contact-discontinSity

The limits of the intermediate states of the Riemann solutions are determined by the limitsef1, 2, 3.

Lemmad4.l. If v_ < vy, then

v = Dp+p- (vy —v_), lim s5 = log <é> )
2(/p+P=+ /P=P+) €0 B

lim Ves{ = lim es§ =
e—0 e—0
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Proof. The fact that lim_o/es] = lim._,0./es§ follows directly from the relation| = s§ + log B. It suffices to
show the limit for,/es{, for which we need the relation:

B
HGI RS \/; 1(s§ +logB) =

Usingh{(sy) = (2/e(y = 1)(1—e€" c@es1) andCe = (v —v_)/c, we can show the following limit:

—€aes _1‘ y—1 \/Z
6IE)n 7(1 € 1)—2 /—e_ —ﬂ+ﬁ(v+—v,).

It follows from the above limit that

lim a5 = — = DVOP—
Ny S

—v)

as asserted.
For the limit of 55, we use

s5 = log A = log L
2 FEG59) f5(s9) els5—51)/ve

andsg = s§ + log B to yield the desired limit. O
With the above lemma, we are able to conclude the following theorem.
Theorem 4.1. Whenv_ < v, the cavitation occurs as — 0. More precisely
i, Py = lim, pz =0, m, 2 = 5

These limits follow directly from the relations:
pi=p_e 1 ps=p el
and

p5 = pj €.

5. Processes of concentration and cavitation: numerical smulations

Inorderto understand the processes of concentration and cavitation in the Riemann solutions todugl Btibers
(1.1)—(1.4)when the pressure vanishes, we present a selected group of representative numerical results. We hav
performed many more numerical tests to make sure what we present are not numerical artifacts.

To discretize the conservation laii5), we use the central scheme of the form:

+1 1 1 7 7 7
M;l = M;l - Qk(f(’/i;lq_ls €) — f(M;l'_]_s 6) + Q)\(al}+1/2ye(u}+1 - M}) - al}_l/z’e(l"} - u’}_l))v (5.1)

whered’,, , . are the maximal local speeds ahd= At/Ax. This scheme coincides with the so-called local
Lax—Friedrichs scheme i[26]; for its higher-order version, sg&9]. The main feature of this type of central
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Fig. 1. Density and velocity for = 0.085 andr = 0.1.

schemes is to use more precise information about the local speeds of wave propagation, in comparison with the
original Lax—Friedrichs scheme as well as its higher-order extension—the NT s¢h&me

To illustrate the process of concentration, we solve the Riemann problefh.19+(1.4)with y = 1.4 for an
ideal gas subject to Riemann data determined by

(1.0,15,25) ifx <0,

(o, v, E)(x,0) = { (0.2,0.0,1.25 if x> 0.

We calculate by the first-order scherttel) (see, e.g[19,26)) up tor = 0.1, 0.3 with mesh 200. The numerical
simulations for different choices efare presented iRigs. 1-3for r = 0.1 and inFigs. 10-1Zor r = 0.1 and in
Figs. 4—6for r = 0.3.

These figures show the process of concentration in the vanishing pressure limit of the Riemann solutions containing
two shocks and one-contact-discontinuity in nonisentropic Euler flow. We starkwit0.085, thene = 0.055,
and finallye = 0.025.Figs. 1-6show the concentration of density yielding a weightedeasure in the limit, in

251 A

o5 4

(a) o I I L 1 1 L L L L (b) 0 1 L L 1 L L L L 1
[+] 01 02 03 04 05 06 o7 cs8 08 1 1] 01 02 03 o4 05 a8 0z [sX:] 08 1

Fi

g. 2. Density and velocity for = 0.055 andr = 0.1.
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Fig. 3. Density and velocity for = 0.025 andr = 0.1.

which the horizontal axis is for the space variabland the vertical axis is for the densifjigs. 1b—6bshow the
change of the velocity asdecreases yielding a step function in the limit, in which the horizontal axis is for the
space variable and the vertical axis is for the velocity.

We can clearly see from these numerical results that, wiistreases, the locations of the two shocks become
closer to the contact-discontinuity, and the densities of the intermediate states increase dramatically, while the
velocity is closer to a step function; in the vanishing pressure limit, the two shocks and the contact-discontinuity
coincide to form, along with the intermediate states;shock of the transpogquations (1.6) and (1.,Avhile the
velocity is a step function.

The process of cavitation is simulated for the Riemann prolflef)—(1.4)with the initial data determined by

(1.0,0,25)  ifx <0,

(0, v, E)(x,0) = { (0.2,15,1.25 ifx>0.

In the rarefaction wave cases, we employ the first-order central sctg&i)¢o compute the solution up o=

35

25F

0sfF

o I L L L 1 1 1 L L by © . 1 1 I L 1 1 N
(@) % 0.1 02 03 04 05 06 07 0a 08 . (b)) % 01 0z 03 04 05 08 07 08 08 1

Fig. 4. Density and velocity for = 0.085 andr = 0.3.
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Fig. 5. Density and velocity for = 0.055 andr = 0.3.
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Fig. 6. Density and velocity for = 0.025 andr = 0.3.
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Density and momentum fer= 0.085 andr = 0.1.
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Fig. 11. Density and momentum fer= 0.055 andr = 0.3.

0.1, 0.3, respectively. Numerical simulations are presenteligs. 7—9for + = 0.3. These figures show the pro-

cess of cavitation in the vanishing pressure limit of the Riemann solutions containing two rarefaction waves and
one-contact-discontinuity, starting away from the vacuum, in nonisentropic Euler flow. We stagt with085,

thene = 0.055, and finallye = 0.025.Figs. 7a—12a&how the cavitation of the density yielding a vacuum state
between the left boundary of the 1-rarefaction wave and the right boundary of the 2-rarefaction wave in the limit, in
which the horizontal axis is for the space variablend the vertical axis is for the densifigs. 7b—12kshow the
change of the momentum aslecreases yielding a linear function between the left boundary of the 1-rarefaction
wave and the right boundary of the 2-rarefaction wave in the limit, in which the horizontal axis is for the space
variablex and the vertical axis is for the momentum.

We can clearly see from these numerical results that, whidcreases, the left boundary of the 1-rarefaction
wave and the right boundary of the 2-rarefaction wave are fixed; the right boundary of the 1-rarefaction wave and
the left boundary of the 2-rarefaction wave become closer and closer, while the states between the left boundary of
the 1-rarefaction wave and the right boundary of the 2-rarefaction wave in the Riemann solution tends to a vacuum

0B
08

06} E 0.5[-

0.4f
o4

0z

ozl
f d
L | L L L L A op ' \ \ . L . . A \

(a) CC 01 02 0.3 0.4 05 06 07 08 0.9 1 (b) o 01 02 03 0.4 05 a6 07 0.8 o 5-] 1

Fig. 12. Density and momentum fer= 0.025 andr = 0.3.
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state; and, in the limit, the left boundary of the 1-rarefaction wave and the right boundary of the 2-rarefaction wave
become two-contact-discontinuities of the transgguations (1.6) and (1.7)
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