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Abstract

Numerical simulations [2-D Riemann problem in gas dynamics and formation of spiral, in: Nonlinear Problems in Engineer-
ing and Science—Numerical and Analytical Approach (Beijing, 1991), Science Press, Beijing, 1992, pp. 167–179; Discrete
Contin. Dyn. Syst. 1 (1995) 555–584; 6 (2000) 419–430] for the Euler equations for gas dynamics in the regime of small
pressure showed that, for one case, the particles seem to be more sticky and tend to concentrate near some shock locations, and
for the other case, in the region of rarefaction waves, the particles seem to be far apart and tend to form cavitation in the region.
In this paper we identify and analyze the phenomena of concentration and cavitation by studying the vanishing pressure limit
of solutions of the full Euler equations for nonisentropic compressible fluids with a scaled pressure. It is rigorously shown that
any Riemann solution containing two shocks and possibly one-contact-discontinuity to the Euler equations for nonisentropic
fluids tends to aδ-shock solution to the corresponding transport equations, and the intermediate densities between the two
shocks tend to a weightedδ-measure that, along with the two shocks and possibly contact-discontinuity, forms theδ-shock as
the pressure vanishes. By contrast, it is also shown that any Riemann solution containing two rarefaction waves and possibly
one-contact-discontinuity to the Euler equations for nonisentropic fluids tends to a two-contact-discontinuity solution to the
transport equations, and the nonvacuum intermediate states between the two rarefaction waves tend to a vacuum state as
the pressure vanishes. Some numerical results exhibiting the processes of concentration and cavitation are presented as the
pressure decreases.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fluids are substances whose molecular structure offers no resistance to external shear forces: even the smallest
force causes deformation of a fluid particle. In most cases of interest, a fluid can be regarded as continuum,
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thus satisfies the balance laws of density, momentum, and energy. Fluids with large Mach number and far from
solid surfaces can be described as the inviscid Euler equations. Pressure as a thermodynamic variable depends
on other fluid variables such as density and internal energy. Such dependence is possible to be estimated from
statistic mechanics or kinetic theory and is usually obtained by laboratory measurement. If the gas is ideal, then
the pressure may become small in some physical regimes, for example, when the density or internal energy is
small.

It is well-known, in the compressible fluid flow, if the speed is larger than the sound speed, shocks may form when
particles collide. However, as observed numerically in[5,6] for gas dynamics in the regime of small pressure: for
one case, the particles seem to be more sticky and tend to concentrate at some shock locations which move with the
associated shock speeds, and for the other case, in the region of rarefaction waves, the particles seem to be far apart
and tend to form cavitation in the region. Such phenomena may be regarded as a tendency towards the concentration
and cavitation in terms of the density. We have rigorously justified the phenomena of concentration and cavitation
for isentropic fluids by looking at the vanishing pressure limit in[11]. One of the main objectives of this paper is
to show rigorously that the phenomena of concentration and cavitation in the solutions are fundamental in inviscid
nonisentropic flow, which occur not only in the multi-dimensional situations, but also even in the one-dimensional
case.

Consider the nonisentropic compressible fluids modeled by the full Euler equations in Eulerian coordinates:

∂tρ + ∂x(ρv) = 0, (1.1)

∂t(ρv)+ ∂x(ρv
2 + P) = 0, (1.2)

∂t(ρE)+ ∂x((ρE + P)v) = 0, (1.3)

whereρ represents the density,m = ρv the momentum,ρE the total energy,P the scalar pressure, andγ > 1 the
adiabatic exponent; andρ andm are in a physical region{(ρ,m) : ρ ≥ 0, |m| ≤ V0ρ} for someV0 > 0. Forρ > 0,
v = m/ρ is the velocity with|v| ≤ V0. In order to analyze the vanishing pressure limit of solutions, we assume
that the scalar pressureP is a scaled function of the conserved quantities of the densityρ, momentumm, and total
energyρE for polytropic gases:

P = ε(γ − 1)

(
ρE − m2

2ρ

)
(1.4)

with a small scaling parameterε > 0 modeling the strength of pressureP . Experimental and numerical studies of
flows are often carried out on models, and the results are displayed in dimensionless form, thus allowing scaling to
real flow conditions. The scaling(1.4) may not be claimed as a faithful description of the whole fluid flow, but it
does in the regime of small pressure in the flow. Although the parameterε can be considered very small and reflects
the strength of the underlying pressure, it does not vanish in general. We propose to include this parameter in hopes
of understanding the process of the formation of concentration and cavitation in nonisentropic compressible fluid
flow.

System(1.1)–(1.4)is an archetype of hyperbolic systems of conservation laws of the form:

∂tu+ ∂xf(u, ε) = 0 (1.5)

with u = (ρ, ρv, ρE)� andf(u, ε) = (ρv, ρv2 + εp, (ρE + εp)v)� with p = (γ − 1)(ρE −m2/2ρ).
As ε → 0, the limit system formally becomes the following transport equations:

∂tρ + ∂x(ρv) = 0, (1.6)
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∂t(ρv)+ ∂x(ρv
2) = 0 (1.7)

with an additional conservation law:

∂t(ρE)+ ∂x(ρvE) = 0. (1.8)

In this paper, we rigorously study the limit process and prove that the additional conservation law(1.8) actually
yields the entropy inequality:

(ρv2)t + (ρv3)x ≤ 0 (1.9)

in the sense of distributions for the Riemann solutions to(1.6) and (1.7). The closed system(1.6) and (1.7), with
the entropy inequality(1.9), is also called the one-dimensional system of pressureless Euler equations, modeling
the motion of free particles which stick under collision and other related motions (see[4,13,34]).

The transportequations (1.6) and (1.7)have been analyzed extensively since 1994; for example, see
[1–4,13–15,20–22,24,31–33]and the references cited therein. Also see[16–18,25,29,30]for related equations
and results. It has been shown that, for the transport equations,δ-shocks and vacuum states do occur in the Riemann
solutions satisfying the entropy inequality(1.9). The occurrence ofδ-shocks and vacuum states can be regarded as
a result of resonance between the two characteristic fields of the transportequations (1.6) and (1.7).

In this paper, we rigorously analyze the phenomena of concentration and cavitation in the vanishing pres-
sure limit of inviscid nonisentropic fluid flow. This limit can be regarded as a singular flux-function limit of
entropy solutions to hyperbolic conservation laws(1.5). We prove that such phenomena occur even naturally in the
one-dimensional case: any Riemann solution containing two shocks and possibly one-contact-discontinuity to the
Eulerequations (1.1)–(1.4)tends to aδ-shock solution to the transportequations (1.6) and (1.7), and the interme-
diate densities between the two shocks tend to a weightedδ-measure that, along with the two shocks and possibly
one-contact-discontinuity, forms aδ-shock; by contrast, any Riemann solution with two rarefaction waves and pos-
sibly one-contact-discontinuity for(1.1)–(1.4)tends to a two-contact-discontinuity solution to(1.6) and (1.7), the
nonvacuum intermediate states between the two rarefaction waves tend to a vacuum state; and the conservation law
of energy(1.8)yields the entropy inequality(1.9)naturally imposed on theδ-shocks. This shows that aδ-shock for
the transport equations is a result of concentration of the density, while a vacuum state is a result of cavitation in
the vanishing pressure limit; both are fundamental and physical in fluid dynamics.

Since strict hyperbolicity of the limiting system fails, the phenomena of concentration and cavitation as the
pressure decreases can be regarded as a process of resonance formation between the two characteristic fields from
the point of view of hyperbolic conservation laws. These phenomena show that the flux-function limit can be very
singular: the limit functions of solutions are no longer in the spaces of functions,BVorL∞; and the space of Radon
measures, for which the divergences of certain entropy and entropy flux fields are Radon measures, is a natural
space for dealing with such a limit in general. See[8–10] for a theory of divergence-measure fields.

In Section 2, we discussδ-shocks and vacuum states for the transportequations (1.6) and (1.7)and examine the
dependence of the Riemann solutions on the parameterε > 0 for the Eulerequations (1.1)–(1.4). In Section 3,
we analyze the phenomenon of concentration in the vanishing pressure limit of the Riemann solutions to the Euler
equations (1.1)–(1.4). In Section 4, we analyze the phenomenon of cavitation in the vanishing pressure limit of the
Riemann solutions to(1.1)–(1.4). In Section 5, we present some representative numerical results, obtained by using
the localized central scheme (see[19,26]), to examine the processes of concentration and cavitation in the Riemann
solutions to(1.1)–(1.4)as the pressure decreases.
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2. δ-Shocks, vacuum states, and Riemann solutions

In this section, we first briefly discussδ-shocks and vacuum states in the Riemann solutions to the transport
equations (1.6) and (1.7), and then we examine the dependence of the Riemann solutions on the parameterε > 0
for the Eulerequations (1.1)–(1.4).

2.1. δ-Shocks and vacuum states for the transport equations

Consider the Cauchy problem for the transportequations (1.6) and (1.7)with Riemann initial data:

(ρ, v)(x,0) = (ρ±, v±), ±x > 0 (2.1)

for ρ± > 0. Since the equations and the Riemann data are invariant under uniform stretching of coordinates:

(x, t) → (αx, αt),

we look for the self-similar solutions of(1.6), (1.7)and(2.1):

(ρ, v)(x, t) = (ρ, v)(ξ), ξ = x

t
,

for which the Riemann problem is reduced to the boundary value problem of the ordinary differential equations:

−ξρξ + (ρv)ξ = 0, −ξ(ρv)ξ + (ρv2)ξ = 0, (ρ, v)(±∞) = (ρ±, v±).

As in [31], in the casev− < v+, we can obtain the following solution that consists of two-contact-discontinuities
and a vacuum state determined by the Riemann data(ρ±, v±):

(ρ, v)(ξ) =



(ρ−, v−), −∞ < ξ ≤ v−,

(0, ξ), v− ≤ ξ ≤ v+,

(ρ+, v+), v+ ≤ ξ < ∞.

In the casev− > v+, a key observation is that the singularity cannot be a jump with finite amplitude, i.e. there is no
solution which is piecewise smooth and bounded; hence a solution containing a weightedδ-measure (i.e.δ-shock),
supported on a line, was constructed in order to establish the existence in a space of measures from the mathematical
point of view (also see[29,30]).

To define the measure solutions, the weightedδ-measurew(t)δS with weightw ∈ C[0,∞), supported on a smooth
curveS = {(x(s), t(s)) : a < s < b} can be defined by

〈w(·)δS, ψ(·, ·)〉 =
∫ b

a

w(t(s))ψ(x(s), t(s))
√
x′(s)2 + t′(s)2 ds

for anyψ ∈ C∞
0 (R × R+),R = (−∞,∞) andR+ = (0,∞).

With this definition, one can construct a family of solutions in the casev− > v+. A δ-measure solution with
parameterσ can be obtained as

ρ(x, t) = ρ0(x, t)+ w0(t)δS, v(x, t) = v0(x, t).

HereS = {(x, t) : x = σt,0 ≤ t < ∞}:

ρ0(x, t) = ρ− + [ρ]H(x− σt), v0(x, t) = v− + [v]H(x− σt), w0(t) = t

1 + σ2
(σ[ρ] − [ρv]),
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where [g] := g+ − g− denotes the jump of functiong across the discontinuity from the left stateg− to the right
stateg+, andH(x) is the Heaviside function that is 0 whenx < 0 and 1 whenx > 0.

Then one can conclude that theδ-measure solution satisfies

〈ρ, φt〉 + 〈ρv, φx〉 = 0, (2.2)

〈ρv, φt〉 + 〈ρv2, φx〉 = 0 (2.3)

for φ ∈ C∞
0 (R × R+), where

〈ρvk, φ〉 =
∫ ∞

0

∫ ∞

−∞
ρ0v

k
0φ dx dt + 〈wk δS, φ〉, k = 0,1,2,

and

wk(t) = t

1 + σ2
([ρvk+1] − σ[ρvk]). (2.4)

A unique solution can be singled out by theδ-Rankine–Hugoniot condition:

σ =
√
ρ+v+ + √

ρ−v−√
ρ+ + √

ρ−
(2.5)

satisfying theδ-entropy condition:

v+ < σ < v−, (2.6)

which is consistent with(1.9). The entropy condition means that, in the(x, t)-plane, all the characteristic lines on
either side of aδ-shock run into the line ofδ-shock, which implies that aδ-shock is an overcompressive shock.

2.2. Riemann solutions to the Euler equations for nonisentropic fluids

The Eulerequations (1.1)–(1.4)for smooth solutions withρ(x, t) > 0 can be written as

∂tu+ A(u)∂xu = 0, u = (ρ, ρv, ρE)�,

where

A(u) =




0 1 0

1
2((γ − 1)ε− 2)v2 (2 − ε(γ − 1))v ε(γ − 1)

− 1

ε(γ − 1)
(cε)2v+ ε(γ − 1)− 1

2
v3 1

ε(γ − 1)
(cε)2 + 1 − 2ε(γ − 1)

2
v2 (1 + ε(γ − 1))v


 .

Then the eigenvalues of system(1.1)–(1.4)are

λ1 = v− cε, λ2 = v, λ3 = v+ cε for ρ > 0,

with associated right eigenvectors:

rj =




1

v+ θjc
ε

1

2
v2 + θjc

εv+
θ2
j

ε(γ − 1)
(cε)2



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and left eigenvectors:

lj =
(

1

2
v2 − θj

ε(γ − 1)
cεv+

θ2
j − 1

ε(γ − 1)
(cε)2,−v+ θj

ε(γ − 1)
cε,1

)
,

whereθj = sign(j − 2) and

cε = c(e, ε) :=
√
εγε(γ − 1)e, γε = 1 + ε(γ − 1).

The Riemann invariants along the characteristic fields are{
Sε, v+ 2

ε(γ − 1)
cε
}
, {v, p},

{
Sε, v− 2

ε(γ − 1)
cε
}
, (2.7)

respectively, where

Sε = ln

(
pρ−γε
κ

)
with κ > 0 (2.8)

and

p = (γ − 1)ρe. (2.9)

The Riemann solutions, which are the functions ofξ = x/t, are solutions of

−ξρξ + (ρv)ξ = 0, −ξ(ρv)ξ + (ρv2 + εp)ξ = 0, −ξ(ρE)ξ + ((ρE + εp)v)ξ = 0,

(ρ, v, E)(±∞) = (ρ±, v±, E±).

Then the Rankine–Hugoniot conditions for discontinuous solutions to(1.1)–(1.4)on a discontinuity are

σ[ρ] = [ρv], σ[ρv] = [ρv2 + εp], σ[ρE] = [(ρE + εp)v],

which can be rewritten in terms ofw := v− σ andJ := ρw = ρv− σρ as

[J ] = 0, [Jw+ εp] = 0, J

[
2

ε(γ − 1)
(cε)2 + w2

]
= 0.

Hereafter, we use the usual notation [g] = gr − gl , wheregl andgr are the values of functiong on the left-hand and
the right-hand sides of the discontinuity, respectively.

Contact-discontinuities. If σ = vl = vr, the discontinuity is a contact-discontinuitySc, which corresponds to the
second family of characteristic fields. Then

[v] = 0, [p] = 0.

Shock curves. If σ �= vl, vr, then the discontinuity is a shock wave, which corresponds to either the first or third
family of characteristic fields. Then the Lax entropy inequalities and the Rankine–Hugoniot conditions imply that,
on a 1-shockS1:

[p] > 0, [ρ] > 0, [v] < 0 (2.10)

and, on a 3-shockS3:

[p] < 0, [ρ] < 0, [v] < 0, (2.11)

which means that the shocks are compressive.
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We now explicitly calculate the two one-parameter families of shock curves to examine their dependence onε.
Define

π = pr

pl
, z = ρr

ρl
, αε = γ − 1

2γε
, βε = 2

ε(γ − 1)
+ 1.

The entropy inequalities(2.10) and (2.11)show thatπ > 1 andz > 1 for 1-shocks andπ < 1 andz < 1 for
3-shocks. The relation(cε)2 = εγεp/ρ gives

cεr

cεl
=
√
π

z
.

Similarly, [J ] = 0, i.e.ρlwl = ρrwr, yields

wr

wl
= ρl

ρr
= 1

z
.

Substituting the above relations intoJ [(2/ε(γ − 1))(cε)2 + w2] = 0 leads to(
wl

cεl

)2

= (βε − 1)z(z− π)

1 − z2
. (2.12)

Also, using [εp+ Jw] = 0, we find(
wl

cεl

)2

= z(1 − π)

γε(1 − z)
. (2.13)

A combination of the above two relations yields

z = 1 + πβε

π + βε
< βε.

Sinceβε − z = (1 − z2)/(z− π), it follows from (2.12)that

wl

cεl
= (−1)(j−1)/2

√
(βε − 1)z

βε − z

for j-shocks,j = 1,3. The relationw = v− σ gives the shock speed:

σ = vl + (−1)(j+1)/2cεl

√
(βε − 1)z

βε − z
= vl + (−1)(j+1)/2cεl

√
1 + πβε

1 + βε
(2.14)

for j-shocks,j = 1,3. Noting thatwl = zwr andw = v− σ, we then have

vr − vl = z− 1

z
(σ − vl) = (−1)(j−1)/2cεl

√
βε − 1

γε

π − 1√
1 + πβε

.

Following [27], one introducesπ = e−s ≥ 1 for s ≤ 0. In terms of this parameterization, we obtain the following
formulas for thej-shock curves,j = 1,3, respectively.

• 1-Shock curve. Fors ≤ 0:

pr

pl
= e−s,

ρr

ρl
= βε + es

1 + βε es
,

vr − vl

cεl
= 2

√
αε/ε

γ − 1

1 − e−s√
1 + βε e−s .
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• 3-Shock curve. Fors ≤ 0:

pr

pl
= es,

ρr

ρl
= βε + e−s

1 + βε e−s ,
vr − vl

cεl
= 2

√
αε/ε

γ − 1

es − 1√
1 + βε es

.

Rarefaction wave curves. Since the 1-Riemann invariants are constant in any 1-rarefaction waveR1, we have

Sεr = Sεl (2.15)

and

vr + (βε − 1)cεr = vl + (βε − 1)cεl . (2.16)

Then(2.15)and the relationp = κ eS
ε
ργε yield

pr

pl
=
(
ρr

ρl

)γε
.

From(cε)2 = εγεp/ρ, we have

pr

pl
=
(
cεr

cεl

)(βε−1)γε
. (2.17)

Using(2.16), we have

vr − vl

cεl
= (βε − 1)

(
1 − cεr

cεl

)
. (2.18)

The fact thatλ1 = v− cε must increase in a 1-rarefaction waveR1 impliesvr − vl > cεr − cεl . Combining this with
(2.17) and (2.18)yields 0< cεr /c

ε
l < 1 and 0< pr/pl < 1. Thus, we can introduce a parameters by

s = − log

(
pr

pl

)
≥ 0.

Then we have

• 1-Rarefaction wave curve. Fors ≥ 0:

pr

pl
= e−s,

ρr

ρl
= e−s/γε ,

vr − vl

cεl
= (βε − 1)(1 − e−εαεs).

• 3-Rarefaction wave curve. Fors ≥ 0:

pr

pl
= es,

ρr

ρl
= es/γε ,

vr − vl

cεl
= (βε − 1)(eεαεs − 1).

Therefore, we have

• 1-Family curves. Fors ∈ R:

pr

pl
= e−s,

ρr

ρl
= f ε1(s) :=




e−s/γε , s ≥ 0,

βε + es

1 + βε es
, s ≤ 0,

vr − vl

cεl
= hε1(s) :=



(βε − 1)(1 − e−εαεs), s ≥ 0,

2
√
αε/ε

γ − 1

1 − e−s√
1 + βε e−s , s ≤ 0.
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• 2-Family curves. Fors ∈ R:

pr

pl
= 1,

ρr

ρl
= es, vr = vl .

• 3-Family curves. Fors ∈ R:

pr

pl
= es,

ρr

ρl
= f ε3(s) = 1

f ε1(s)
,

vr − vl

cεl
= hε3(s) :=



(βε − 1)(eεαεs − 1), s ≥ 0,

2
√
αε/ε

γ − 1

es − 1√
1 + βε es

, s ≤ 0.

Riemann solutions. Consider the Riemann problem for(1.1)–(1.4):

u(x,0) = u±, ±x > 0. (2.19)

With the above explicit formulas, it suffices for solving the Riemann problem to findsε1, s
ε
2, andsε3 determined by

ρ+ = f ε1(s
ε
1)es

ε
2f ε3(s

ε
3)ρ−, (2.20)

p+ = es
ε
3−sε1p−, (2.21)

v+ = v− + cε−

(
hε1(s

ε
1)+ e−(sε1+sε2)/2√

f ε1(s
ε
1)
hε3(s

ε
3)

)
. (2.22)

Define

A = ρ+
ρ−
, B = p+

p−
, Cε = v+ − v−

cε−
.

Then one can findsεi , i = 1,2,3, successively as follows:

hε1(s
ε
1)+

√
B

A
hε1(s

ε
1 + logB) = Cε, (2.23)

sε3 = sε1 + logB, (2.24)

sε2 = log

(
A

fε1(s
ε
1)f

ε
3(s

ε
3)

)
, (2.25)

where we used the fact thatf ε1(s)f
ε
3(s) = 1 andhε3(s) = es/2hε1(s)

√
f ε1(s).

Combining the above relations with the fact that(hε1)
′(sε1) > 0 andhε1(R) = (−∞, βε−1], we have the following

theorem.

Theorem 2.1. For any fixedε > 0, there exists a unique Riemann solutionR(x/t), staying away from the vacuum,
of the Riemann problem(1.1)–(1.4)with Riemann data(2.19)if and only if

v+ − v− <
2

γ − 1

cε− + cε+
ε

.

Otherwise, the vacuum is present in the Riemann solution.

This means that, given the Riemann data staying away from the vacuum, there exists always a unique Riemann
solution staying away from the vacuum whenε is sufficiently small, since

cε− + cε+
ε

→ ∞ as ε → 0,
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which is different from the situation for isentropic flow[11]. On the other hand, we will see below that, although
the intermediate densities in the Riemann solution stay away from zero for any fixedε > 0, they become closer and
closer to zero asε → 0, a phenomenon of cavitation.

Whenu+ ∈ S2ScS1(u−), R(x/t)may contain a 1-shock, a two-contact-discontinuity, a 3-shock, and two nonva-
cuum intermediate constant states between the shocks and the contact-discontinuity; and, whenu+ ∈ R2ScR1(u−),
R(x/t) may contain a 1-rarefaction wave, a two-contact-discontinuity, a 3-rarefaction wave, and two nonvacuum
intermediate constant states between the rarefaction waves and the contact-discontinuity. Since the other two regions
S2ScR1(u−) andR2ScS1(u−) in R

3 have empty interior whenε tends to zero, it suffices to analyze the limit process
for the two casesu+ ∈ S2ScS1(u−) (in Section 3) andu+ ∈ R2ScR1(u−) (in Section 4). For more details about
Riemann solutions, see[7,12,27,28].

3. Concentration in the vanishing pressure limit

In this section, we study the phenomenon of concentration and the formation ofδ-shocks in the vanishing
pressure limit of Riemann solutions to the Euler equations for nonisentropic fluids in the caseu+ ∈ S2ScS1(u−)
with v− > v+.

3.1. Limiting behavior of the Riemann solutions asε → 0

Letuεi := (ρεi , ρ
ε
i v
ε∗, ρεi E

ε
i ), i = 1,2, withpε1 = pε2 = pε∗, be the intermediate states in the sense that(p−, ρ−, v−)

and(pε∗, ρε1, v
ε∗) determine a 1-shockS1 with speedσε1 and that(pε∗, ρε2, v

ε∗) and(p+, ρ+, v+) determine a 3-shock
S3 with speedσε3. The differenceρε2 − ρε1 is the jump of density which determines a two-contact-discontinuitySc.

Based on these facts, we can obtain the limits ofsεi , i = 1,2,3, asε → 0, respectively.

Lemma 3.1. If v− > v+, then

lim
ε→0

εe−sε1 = q1 := ρ+ρ−(v+ − v−)2

p−(
√
ρ+ + √

ρ−)2
, lim

ε→0
εe−sε3 = q3 := ρ+ρ−(v+ − v−)2

p+(
√
ρ+ + √

ρ−)2
,

lim
ε→0

es
ε
2 = q2 := 2 + (γ − 1)q3

2 + (γ − 1)q1
.

Proof. From(2.23), it follows that

1 − e−sε1√
1 + βε e−sε1

+
√
B

A

1 − e−sε1/B√
1 + βε e−sε1/B

= (γ − 1)Cε

2
√
αε/ε

= v+ − v−√
2e−

. (3.1)

Note thatcε− = √
εe−γε(γ − 1) andαε = (γ − 1)/(2γε). Passing to the limitε → 0 yields

1 − e−sε1√
1 + βε e−sε1

+
√
B

A

1 − e−sε1/B√
1 + βε e−sε1/B

→ − q1√
2q1/(γ − 1)

−
√
B

A

q1/B√
2q1/(B(γ − 1))

= −
√
q1(γ − 1)

1 + √
A√

2A
, (3.2)

whereq1 = limε→0 εe−sε1. Combining(3.1)with (3.2), we obtainq1 as asserted.
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The second limitq3 follows from the above limit and the relation:

εe−sε3 = εe−sε1
B

.

Note that

sε2 = log

(
A

fε1(s
ε
1)f

ε
3(s

ε
3)

)

and

f ε1(s
ε
1)f

ε
3(s

ε
3) = (βε + es

ε
1)(1 + βε es

ε
3)

(βε + es
ε
3)(1 + βε es

ε
1)

→ q3(γ − 1)+ 2

Bq3(γ − 1)+ 2
as ε → 0.

We thus obtain the limit of es
ε
2 asε → 0. �

Lemma 3.2. Asε → 0, the intermediate densitiesρε1 andρε2 become unbounded, i.e.:

lim
ε→0

ερε1 = 2ρ−q1

2 + (γ − 1)q1
, lim

ε→0
ερε2 = 2ρ+q3

2 + (γ − 1)q3
.

Proof. Note thatρε1 = ρ−f ε1(s
ε
1) = ρ−(βε + es

ε
1)/(1 + βε es

ε
1), whereβε es

ε
1 → 2/((γ − 1)q1) asε → 0. Thus:

lim
ε→0

ερε1 = ρ− lim
ε→0

2/(γ − 1)+ ε(1 + es
ε
1)

1 + βε es
ε
1

= 2ρ−q1

2 + (γ − 1)q1
.

The limit of ρε2 follows from the relation:

ρε2 = ρ+f ε1(s
ε
3)

andLemma 3.1. �

We now consider the intermediate velocityvε∗ and pressurepε∗ between the two shocks.

Lemma 3.3. The intermediate velocityvε∗ and pressurepε∗ satisfy

lim
ε→0

vε∗ = σ :=
√
ρ−v− + √

ρ+v+√
ρ+ + √

ρ−
(3.3)

and

lim
ε→0

εpε∗ = ρ+ρ−(v+ − v−)2

(
√
ρ+ + √

ρ−)2
. (3.4)

Proof. Using the formula for the 1-shock curve, we have

vε∗ = v− + 2

γ − 1
cε−

√
αε

ε

1 − e−sε1√
1 + βε e−sε1

.

Noting thatcε− = √
εe−γε(γ − 1) andαε = (γ − 1)/2γε, we find

lim
ε→0

vε∗ = v− +
√

2e− lim
ε→0

1 − e−sε1√
1 + βε e−sε1

= v− −
√
(γ − 1)e−q1,

which yields(3.3)by using the expressions forq1.
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For the intermediate pressure, one has

pε∗ = p−e−sε1, p+ = pε∗ es
ε
3.

Combining this with the estimates forsεi , i = 1,3, yields(3.4). �

Lemma 3.4.

lim
ε→0

σε1 = lim
ε→0

σε2 = lim
ε→0

σε3 =
√
ρ−v− + √

ρ+v+√
ρ+ + √

ρ−
= σ ∈ (v+, v−).

Proof. The limit for σε2 = vε∗ directly follows from the known limit forvε∗ above.
By (2.14)with π = e−sε1, we have

lim
ε→0

σε1 = v− − lim
ε→0

cε−

√
1 + βε e−sε1

1 + βε
= v− −

√
(γ − 1)e−q1.

Combining this with the expression ofq1 yields the desired limit forσε1. The limit forσε3 can similarly be proved.�

Lemma 3.5.

lim
ε→0

ρε1(σ
ε
1 − σε2) = ρ−

√
ρ+√

ρ− + √
ρ+
(v+ − v−) (3.5)

and

lim
ε→0

ρε2(σ
ε
2 − σε3) = ρ+

√
ρ−√

ρ− + √
ρ+
(v+ − v−). (3.6)

Proof. Note thatσε1 = v− − cε−
√
(1 + βεe−sε1)/(1 + βε) and

σε2 = vε∗ = v− + 2cε−
√
αε/ε

γ − 1

1 − e−sε1√
1 + βε e−sε1

.

Thus, we have

ρε1(σ
ε
2 − σε1) = ρε1c

ε
−



√

2

γε(γ − 1)

1 − e−sε1√
1 + βε e−sε1

+
√

1 + βε e−sε1
1 + βε




= ρε1c
ε−√

1 + βε e−sε1

√
2

γε

(
1√
γ − 1

(1 − e−sε1)+ ε
√
γ − 1

2
(1 + βε e−sε1)

)

=
√

2p−
ρ−

ερε1√
ε2 + εβε · εe−sε1

(
1√
γ − 1

+ ε
√
γ − 1

2
(1 + e−sε1)

)

→ 2q1
√

2ρ−p−
(2 + (γ − 1)q1)

√
2q1/(γ − 1)

2 + (γ − 1)q1

2
√
γ − 1

= √
p−ρ−q1,

which gives(3.5). To prove(3.6), we use

σε3 = v+ + cε+

√
1 + βε e−sε3

1 + βε
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and

σε2 = vε∗ = v+ − cε2h
ε
3(s

ε
3),

where

cε2 = εγεp
ε∗

ρε2
= εγε

p+
ρ+
f ε3(s

ε
3)e

−sε3.

Therefore, we have

σε3 − σε2 = cε+



√
ε(γ − 1)

2γε

√
1 + βε e−sε3 + 2

√
αε/ε

γ − 1

1 − e−sε3√
1 + βε e−sε3


 .

Performing similar analysis to that for the first limit, we have

ρε2(σ
ε
3 − σε2) = ρε2c

ε+√
1 + βε e−sε3

√
2

γε

(
1√
γ − 1

+ ε
√
γ − 1

2
(1 + e−sε3)

)
→ √

ρ+p+q3 as ε → 0,

which arrives at(3.6). �

Remark 3.1. The quantityσ that is the limit ofvε∗ andσεj , j = 1,2,3, in Lemma 3.4uniquely determines the
δ-shock solution as the limit of the Riemann solutions whenε → 0 and is consistent with theδ-Rankine–Hugoniot
condition(2.5)and theδ-entropy condition(2.6), as proposed for the Riemann solutions for the pressureless Euler
equations.

3.2. Concentration andδ-shocks

We now show the following theorem characterizing the vanishing pressure limit for the casev− > v+.

Theorem 3.1. Let (ρε, ρεvε, ρεEε) be the Riemann solutions to(1.1)–(1.4)and (2.19), which contain two shocks
and possibly one-contact-discontinuity. Thenρε, ρεvε, andρεEε converge in the sense of distributions, respectively,
and the limit functions are all sums of a step function and aδ-measure with weights

t√
1 + σ2

([ρv] − σ[v]),
t√

1 + σ2
([ρv2] − σ[ρv]),

t√
1 + σ2

([ρvE] − σ[ρE]),

respectively, whereσ = (
√
ρ−v− + √

ρ+v+)/(
√
ρ+ + √

ρ−).

Proof.

1. Forξ = x/t, the Riemann solutions are determined by

ρε(ξ) =




ρ−, ξ < σε1,

ρε1, σε1 < ξ < σε2,

ρε2, σε2 < ξ < σε3,

ρ+, ξ > σε3
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and

vε(ξ) =



v−, ξ < σε1,

vε∗, σε1 < ξ < σε3,

v+, ξ > σε3,

which satisfy the following weak formulations:

−
∫ ∞

−∞
(vε(ξ)− ξ)ρε(ξ)ψ′(ξ)dξ +

∫ ∞

−∞
ρε(ξ)ψ(ξ)dξ = 0, (3.7)

−
∫ ∞

−∞
(vε(ξ)− ξ)ρε(ξ)vε(ξ)ψ′(ξ)dξ +

∫ ∞

−∞
ρε(ξ)vε(ξ)ψ(ξ)dξ = ε

∫ ∞

−∞
pε(ξ)ψ′(ξ)dξ, (3.8)

−
∫ ∞

−∞
(vε(ξ)− ξ)ρε(ξ)Eε(ξ)ψ′(ξ)dξ +

∫ ∞

−∞
ρε(ξ)Eε(ξ)ψ(ξ)dξ = ε

∫ ∞

−∞
pε(ξ)vε(ξ)ψ′(ξ)dξ (3.9)

for anyψ ∈ C∞
0 (R).

2. The first integral in(3.7)can be decomposed into:

−
{∫ σε1

−∞
+
∫ σε2

σε1

+
∫ σε3

σε2

+
∫ ∞

σε3

}
(vε(ξ)− ξ)ρε(ξ)ψ′(ξ)dξ.

The sum of the first and last terms is

−
∫ σε1

−∞
(v− − ξ)ρ−ψ′(ξ)dξ −

∫ ∞

σε3

(v+ − ξ)ρ+ψ′(ξ)dξ

= −v−ρ−ψ(σε1)+ v+ρ+ψ(σε3)+ ρ−σε1ψ(σ
ε
1)−

∫ σε1

−∞
ρ−ψ(ξ)dξ − ρ+σε3ψ(σ

ε
3)−

∫ ∞

σε3

ρ+ψ(ξ)dξ,

which converges, asε → 0, to

([ρv] − σ[ρ])ψ(σ)−
∫ σ

−∞
ρ−ψ(ξ)dξ −

∫ ∞

σ

ρ+ψ(ξ)dξ = ([ρv] − σ[ρ])ψ(σ)−
∫ ∞

−∞
ρ0(ξ − σ)ψ(ξ)dξ

with

ρ0(ξ) = ρ− + [ρ]H(ξ).

Furthermore, we have∫ σε2

σε1

(vε∗ − ξ)ρε1ψ
′(ξ)dξ

= ρε1(σ
ε
2 − σε1)

(
vε∗
ψ(σε2)− ψ(σε1)

σε2 − σε1
− σε2ψ(σ

ε
2)− σε1ψ(σ

ε
1)

σε2 − σε1
+ 1

σε2 − σε1

∫ σε2

σε1

ψ(ξ)dξ

)
,

which, in virtue of the smoothness of the test functionψ(ξ), converges to

(v+ − v−)
ρ−

√
ρ+√

ρ− + √
ρ+
(−σψ′(σ)+ σψ′(σ)+ ψ(σ)− ψ(σ)) = 0
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asε → 0, where we used the facts that limε→0 v
ε∗ = σ and limε→0 σ

ε
i = σ for i = 1,2, and(3.5). Similarly, we

have

lim
ε→0

∫ σε3

σε2

(vε(ξ)− ξ)ρε(ξ)ψ′(ξ)dξ = 0.

Returning to(3.7), one has

lim
ε→0

∫ ∞

−∞
(ρε(ξ)− ρ0(ξ − σ))ψ(ξ)dξ = ([ρv] − σ[ρ])ψ(σ)

for all functionψ ∈ C∞
0 (R).

3. We now justify the limit of the momentummε = ρεvε by using the weak formulation of the momentumequation
(3.8). As done previously, we can obtain the limit for the first term on the left-hand side of(3.8)as

− lim
ε→0

∫ ∞

−∞
(vε(ξ)− ξ)ρε(ξ)vε(ξ)ψ′(ξ)dξ

= ψ(σ)([ρv2] − σ[ρv])−
∫ σ

−∞
ρ−v−ψ(ξ)dξ −

∫ ∞

σ

ρ+v+ψ(ξ)dξ

= ψ(σ)([ρv2] − σ[ρv])−
∫
R

m0(ξ − σ)ψ(ξ)dξ

with

m0(ξ) = ρ−v− + [ρv]H(ξ).

The term on the right-hand side of(3.8)equals to

ε

∫ ∞

−∞
pε(ξ)ψ′(ξ)dξ = ε

(∫ σε1

−∞
p− +

∫ σε3

σε1

pε∗ +
∫ ∞

σε3

p+

)
ψ′(ξ)dξ

= εp−ψ(σε1)+ εpε∗(ψ(σ
ε
3)− ψ(σε1))− εp+ψ(σε3)

= o(ε)+ O(1)(ψ(σε3)− ψ(σε1)) → 0 as ε → 0,

where we used the fact thatεpε∗ is bounded and limε→0 σ
ε
i = σ for i = 1,3.

Returning to the weak formulation(3.8), one has

lim
ε→0

∫ ∞

−∞
(ρε(ξ)vε(ξ)−m0(ξ − σ))ψ(ξ)dξ = ψ(σ)(σ[ρv] − [ρv2]).

4. Next we consider the limit of the total energyEε by using the weak formulation of the energyequation (3.9).
Performing the similar analysis as above and using the identity

ρE = 1

2
ρv2 + p

γ − 1
,

we have

− lim
ε→0

∫ ∞

−∞
(vε(ξ)− ξ)ρε(ξ)Eε(ξ)ψ′(ξ)dξ

= ψ(σ)([ρvE] − σ[ρE])−
∫ σ

−∞
ρ−E−ψ(ξ)dξ −

∫ ∞

σ

ρ+E+ψ(ξ)dξ.
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The term on the right-hand side of(3.9) tends to zero asε → 0. Therefore, we have

lim
ε→0

∫ ∞

−∞
(ρεEε(ξ)− E0(ξ − σ))ψ(ξ)dξ = ψ(σ)(σ[ρE] − [ρvE])

with

E0(ξ) = ρ−E− + [ρE]H(ξ).

5. We are now in the position to study the limits of density, momentum, and energy by tracing the time-dependence
of weights of theδ-measures.

Letψ ∈ C∞
0 (R × R+) and setψ̃(ξ, t) := ψ(ξt, t). Then we have

lim
ε→0

∫ ∞

0

∫ ∞

−∞
ρε(x, t)ψ(x, t)dx dt = lim

ε→0

∫ ∞

0

∫ ∞

−∞
ρε
(x
t

)
ψ(x, t)dx dt

= lim
ε→0

∫ ∞

0
t

(∫ ∞

−∞
ρε(ξ)ψ̃(ξ, t)dξ

)
dt,

sinceρε is a self-similar solution depending only onξ = x/t. Therefore, we have

lim
ε→0

∫ ∞

−∞
ρε(ξ)ψ̃(ξ, t)dξ =

∫ ∞

−∞
ρ0(ξ − σ)ψ̃(ξ, t)dξ + ([ρv] − σ[ρ])ψ̃(σ, t)

= t−1
∫ ∞

−∞
ρ0(x− σt)ψ(x, t)dx+ ([ρv] − σ[ρ])ψ(σt, t).

Combining the above two relations, we have

lim
ε→0

∫ ∞

0

∫ ∞

∞
ρε(x, t)ψ(x, t)dx dt =

∫ ∞

0

∫ ∞

−∞
ρ0(x− σt)ψ(x, t)dx dt +

∫ ∞

0
t([ρv] − σ[ρ])ψ(σt, t)dt.

The last term, by definition, equals to

〈w0(t)δS, ψ(x, t)〉

with w0(t) = (t/
√

1 + σ2)([ρv] − σ[ρ]) as in(2.4).
Similarly, we can show that

lim
ε→0

∫ ∞

0

∫ ∞

−∞
(ρεvε)(x, t)ψ(x, t)dx dt =

∫ ∞

0

∫ ∞

−∞
m0(x− σt)ψ(x, t)dx dt + 〈w1(t)δS, ψ(x, t)〉

with w1(t) = (t/
√

1 + σ2)([ρv2] − σ[ρv]), and

lim
ε→0

∫ ∞

0

∫ ∞

−∞
ρε(x, t)Eε(x, t)ψ(x, t)dx dt =

∫ ∞

0

∫ ∞

−∞
E0(x− σt)ψ(x, t)dx dt + 〈w̃(t)δS, ψ(x, t)〉

with w̃(t) = (t/
√

1 + σ2)([ρvE] − σ[ρE]) as defined in(2.4). �

Finally, we conclude the entropy consistency by proving that the conservation law of energy(1.3) actually yields
the correct entropy inequality(1.9) for the transportequations (1.6) and (1.7).
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Theorem 3.2. The limit functions(ρ, v) are a measure solution of the transport equation(1.6) and (1.7)satisfying

∂t(ρv
2)+ ∂x(ρv

3) ≤ 0

in the sense of distributions.

Proof. Since∂t(ρεEε)+ ∂x(ρ
εvεEε) = 0 in the sense of distributions andρE = p/(γ − 1)+ (1/2)ρv2, then

∂t(ρ
ε(vε)2)+ ∂x(ρ

ε(vε)3) = − 2

γ − 1
(∂tp

ε + ∂x(p
εvε)).

That is, for any nonnegative test functionφ ∈ C∞
0 (R × R+):

−(〈ρε(vε)2, φt〉 + 〈ρε(vε)3, φx〉) = 2

γ − 1
(〈pε, φt〉 + 〈pεvε, φx〉).

Note that

lim
ε→0

∫ ∞

0

∫ ∞

−∞
(pεφt + pεvεφx)dx dt

= lim
ε→0

∫ ∞

0
(σε1(p

ε
∗ − p−)− (pε∗v

ε
∗ − p−v−))φ(σε1t, t)dt

+ lim
ε→0

∫ ∞

0
σε2((p+ − pε∗)− (p+v+ − pε∗v

ε
∗))φ(σ

ε
2t, t)dt

=
∫ ∞

0
(σ(p+ − p−)− (p+v+ − p−v−))φ(σt, t)dt

=
∫ ∞

0
(v− − v+)(αp+ + (1 − α)p−)φ(σt, t)dt < 0,

since, forα = √
ρ−/(

√
ρ+ + √

ρ−) ∈ (0,1):

σ =
√
ρ−v− + √

ρ+v+√
ρ+ + √

ρ−
= αv− + (1 − α)v+.

This verifies the entropy consistency as claimed. �

4. Cavitation in the vanishing pressure limit

In this section, we show the phenomenon of cavitation in the vanishing pressure limit of the Riemann solutions
to (1.1)–(1.4)in the caseu+ ∈ R2ScR1(u−) with v− < v+ andρ± > 0.

Let uε∗ = (ρεi , ρ
ε
i v
ε∗, Eεi ), i = 1,2, withpε∗ = pε1 = pε2 be the intermediate states in the sense that(p−, ρ−, v−)

and(pε∗, ρε1, v
ε∗) determine a 1-rarefaction waveR1, and that(pε∗, ρε2, v

ε∗) and(p+, ρ+, v+) determine a 3-rarefaction
waveR3. The differenceρε2 − ρε1 is the jump of density across the contact-discontinuitySc.

The limits of the intermediate states of the Riemann solutions are determined by the limits ofsεi , i = 1,2,3.

Lemma 4.1. If v− < v+, then

lim
ε→0

√
εsε1 = lim

ε→0

√
εsε3 = (γ − 1)

√
ρ+ρ−

2(
√
ρ+p− + √

ρ−p+)
(v+ − v−), lim

ε→0
sε2 = log

(
A

B

)
.
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Proof. The fact that limε→0
√
εsε1 = limε→0

√
εsε3 follows directly from the relationsε1 = sε3 + logB. It suffices to

show the limit for
√
εsε1, for which we need the relation:

hε1(s
ε
1)+

√
B

A
hε1(s

ε
1 + logB) = Cε.

Usinghε1(s
ε
1) = (2/ε(γ − 1))(1 − e−εαεsε1) andCε = (v+ − v−)/cε−, we can show the following limit:

lim
ε→0

1√
ε
(1 − e−εαεsε1) = 1

2

√
γ − 1

e−

√
A√

A+ √
B
(v+ − v−).

It follows from the above limit that

lim
ε→0

√
εsε1 = (γ − 1)

√
ρ+ρ−

2(
√
ρ+p− + √

ρ−p+)
(v+ − v−)

as asserted.
For the limit ofsε2, we use

sε2 = log

(
A

fε1(s
ε
1)f

ε
3(s

ε
3)

)
= log

(
A

e(s
ε
3−sε1)/γε

)

andsε3 = sε1 + logB to yield the desired limit. �

With the above lemma, we are able to conclude the following theorem.

Theorem 4.1. Whenv− < v+, the cavitation occurs asε → 0. More precisely:

lim
ε→0

ρε1 = lim
ε→0

ρε2 = 0, lim
ε→0

ρε2

ρε1
= A

B
.

These limits follow directly from the relations:

ρε1 = ρ−e−sε1/γε , ρε2 = ρ+e−sε3/γε ,

and

ρε2 = ρε1 es
ε
2.

5. Processes of concentration and cavitation: numerical simulations

In order to understand the processes of concentration and cavitation in the Riemann solutions to the Eulerequations
(1.1)–(1.4)when the pressure vanishes, we present a selected group of representative numerical results. We have
performed many more numerical tests to make sure what we present are not numerical artifacts.

To discretize the conservation laws(1.5), we use the central scheme of the form:

un+1
j = unj − 1

2λ(f(u
n
j+1, ε)− f(unj−1, ε))+ 1

2λ(a
n
j+1/2,ε(u

n
j+1 − unj )− anj−1/2,ε(u

n
j − unj−1)), (5.1)

whereanj±1/2,ε are the maximal local speeds andλ = 9t/9x. This scheme coincides with the so-called local
Lax–Friedrichs scheme in[26]; for its higher-order version, see[19]. The main feature of this type of central
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Fig. 1. Density and velocity forε = 0.085 andt = 0.1.

schemes is to use more precise information about the local speeds of wave propagation, in comparison with the
original Lax–Friedrichs scheme as well as its higher-order extension—the NT scheme[23].

To illustrate the process of concentration, we solve the Riemann problem for(1.1)–(1.4)with γ = 1.4 for an
ideal gas subject to Riemann data determined by

(ρ, v, E)(x,0) =
{
(1.0,1.5,2.5) if x < 0,
(0.2,0.0,1.25) if x > 0.

We calculate by the first-order scheme(5.1) (see, e.g.[19,26]) up to t = 0.1,0.3 with mesh 200. The numerical
simulations for different choices ofε are presented inFigs. 1–3for t = 0.1 and inFigs. 10–12for t = 0.1 and in
Figs. 4–6for t = 0.3.

These figures show the process of concentration in the vanishing pressure limit of the Riemann solutions containing
two shocks and one-contact-discontinuity in nonisentropic Euler flow. We start withε = 0.085, thenε = 0.055,
and finallyε = 0.025.Figs. 1–6show the concentration of density yielding a weightedδ-measure in the limit, in

Fig. 2. Density and velocity forε = 0.055 andt = 0.1.
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Fig. 3. Density and velocity forε = 0.025 andt = 0.1.

which the horizontal axis is for the space variablex and the vertical axis is for the density.Figs. 1b–6bshow the
change of the velocity asε decreases yielding a step function in the limit, in which the horizontal axis is for the
space variablex and the vertical axis is for the velocity.

We can clearly see from these numerical results that, whenε decreases, the locations of the two shocks become
closer to the contact-discontinuity, and the densities of the intermediate states increase dramatically, while the
velocity is closer to a step function; in the vanishing pressure limit, the two shocks and the contact-discontinuity
coincide to form, along with the intermediate states, aδ-shock of the transportequations (1.6) and (1.7), while the
velocity is a step function.

The process of cavitation is simulated for the Riemann problem(1.1)–(1.4)with the initial data determined by

(ρ, v, E)(x,0) =
{
(1.0,0,2.5) if x < 0,
(0.2,1.5,1.25) if x > 0.

In the rarefaction wave cases, we employ the first-order central scheme(3.7) to compute the solution up tot =

Fig. 4. Density and velocity forε = 0.085 andt = 0.3.
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Fig. 5. Density and velocity forε = 0.055 andt = 0.3.

Fig. 6. Density and velocity forε = 0.025 andt = 0.3.

Fig. 7. Density and momentum forε = 0.085 andt = 0.1.
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Fig. 8. Density and momentum forε = 0.055 andt = 0.1.

Fig. 9. Density and momentum forε = 0.025 andt = 0.1.

Fig. 10. Density and momentum forε = 0.085 andt = 0.3.
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Fig. 11. Density and momentum forε = 0.055 andt = 0.3.

0.1,0.3, respectively. Numerical simulations are presented inFigs. 7–9for t = 0.3. These figures show the pro-
cess of cavitation in the vanishing pressure limit of the Riemann solutions containing two rarefaction waves and
one-contact-discontinuity, starting away from the vacuum, in nonisentropic Euler flow. We start withε = 0.085,
thenε = 0.055, and finallyε = 0.025.Figs. 7a–12ashow the cavitation of the density yielding a vacuum state
between the left boundary of the 1-rarefaction wave and the right boundary of the 2-rarefaction wave in the limit, in
which the horizontal axis is for the space variablex and the vertical axis is for the density.Figs. 7b–12bshow the
change of the momentum asε decreases yielding a linear function between the left boundary of the 1-rarefaction
wave and the right boundary of the 2-rarefaction wave in the limit, in which the horizontal axis is for the space
variablex and the vertical axis is for the momentum.

We can clearly see from these numerical results that, whenε decreases, the left boundary of the 1-rarefaction
wave and the right boundary of the 2-rarefaction wave are fixed; the right boundary of the 1-rarefaction wave and
the left boundary of the 2-rarefaction wave become closer and closer, while the states between the left boundary of
the 1-rarefaction wave and the right boundary of the 2-rarefaction wave in the Riemann solution tends to a vacuum

Fig. 12. Density and momentum forε = 0.025 andt = 0.3.
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state; and, in the limit, the left boundary of the 1-rarefaction wave and the right boundary of the 2-rarefaction wave
become two-contact-discontinuities of the transportequations (1.6) and (1.7).
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